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Abstract

The problem of robust stabilization to dynamical systems via delayed feedback is important in
applications. Due to the fact that the characteristic quasi-polynomial of a delayed system is difficult to
analyze when uncertain parameters are involved, this problem has been most frequently solved on the basis
of the method of Lyapunov functional, by solving Riccati equations, or by solving linear matrix
inequalities. By applying the averaging method that reduces the delay differential equation of infinite
dimensional to an ordinary differential equation, this paper presents a simple method to stabilize the trivial
solution or periodic solutions of a type of non-linear delayed vibration systems via delayed state feedback.
In particular, this method is applied to the robust stabilization of those systems when the system parameters
are uncertain, but fall into given intervals, respectively. In addition, an extension is made to this problem
for a general class of delayed systems that result from a small perturbation of a linear delay system with
characteristic roots of non-positive real parts only. This can serve as a straightforward application to the
Hopf bifurcation control of delayed systems with weak non-linearity.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The active control technique has drawn much attention over the past decades. One of important
control objectives is to stabilize engineering systems if their equilibrium positions or steady-state
motions of the control plants are not asymptotically stable. To reach good performance of
stabilization, two factors should be taken into consideration in the design phase of a control. One
comes from the inevitable time delays in the feedback path or deliberately introduced time delays
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in control, and the other from the uncertainty of both time delay and system parameters due to
measurement, modelling errors, etc. The feedback gains, thus, should be chosen so as to render
the controlled system asymptotically stable for all parameter combinations in a given admissible
set. This problem falls into the category of robust stabilization and has been intensively studied
over the past decades, see for example Refs. [1–3] and references therein.

When a delayed feedback control is performed, the controlled system is described by a delay
differential equation (DDE), a special class of functional differential equations (FDE) and has
been intensively studied, see for examples, Refs. [2,4–6]. Generally speaking, the stability
analysis or the stabilization problem of a DDE can be solved by investigating the root location of
the characteristic function or by using the method of Lyapunov functional. It is usually
very difficult to achieve a simple relationship for the stability/stabilization condition in
terms of the system parameters by using the method of characteristic roots, so in the literature,
the problem of robust stabilization to time delayed systems, or the stabilization problem via
delayed feedback control, is most frequently solved on the basis of the method of Lyapunov
functional, by solving Riccati equations [7,8], or by solving linear matrix inequalities [2,9,10].
Such techniques depend heavily on the estimation technique and thus usually give conservative
results.

In many applications, the system can be considered as a small perturbation of a simple
system, so it is possible to apply singular perturbation methods to solve this stabilization
problem. Among the singular perturbation methods for DDEs, the method of multiple
scales is frequently used to determine the periodic solution coming either from Hopf bifurcation
or from a periodic excitation, see for example, Refs. [5,11,12]. Another widely used method is the
averaging method. For example, it has been successfully implemented to study the complex
dynamics of two coupled van der Pol oscillators with delay [13]. In addition, the averaging
technique has also been applied in Ref. [14] to stabilize planar biological systems via delayed
feedback of displacement, and it has been proved that a linear delayed feedback can always
stabilize the trivial solution. In the literature regarding the averaging method, however, the
uncontrolled systems are usually ordinary differential equations (ODE) that result from a small
perturbation of an undamped vibration system such as in Refs. [13,14]. This limits its applications
in practice.

The objective of this study is to develop a simple method, on the basis of the averaging method,
for the robust stabilization to the unstable equilibrium of a class of delayed vibration systems via
delayed feedback control. The system equation under study is described by a much broader class
of DDEs than that discussed in the previous literature. The averaging method is actually not only
applicable to the robust stabilization problem of the trivial solution, but works also for the
problem of Hopf bifurcation control of delayed systems with weak non-linearity, a problem to
annihilate the periodic solution or to obtain an asymptotically stable periodic solution with
desired properties such as oscillation at a given amplitude. The problem is formulated in Section
2. In order to derive a simple stability condition for the trivial solution so that the problem of
robust stabilization can be solved easily, the averaged equation is first derived in Section 3. In
Section 4, the problem of robust stabilization to the vibration system is discussed in detail. A
generalization of the results is made in Section 5, which can also be applied to study the problem
of Hopf bifurcation control. Finally in Section 6, several concluding remarks are drawn from the
discussion.
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2. The problem formulation

In this paper, we study the problem of robust stabilization to a delayed s.d.o.f. vibration system
via delayed feedback in general form

.xðtÞ þ o2xðtÞ þ egðxðtÞ; ’xðtÞ; xðt � t1Þ; ’xðt � t1ÞÞ ¼ ef ðxðtÞ; ’xðtÞ; xðt � t2Þ; ’xðt � t2ÞÞ; ð1Þ

where 0oe51 is the small parameter, f ð0; 0; 0; 0Þ ¼ gð0; 0; 0; 0Þ ¼ 0; xAR; ef is the control force,
t1X0 and t2X0 are the delays in the control plant and the controller, respectively. The trivial
equilibrium of the uncontrolled system (namely f ¼ 0) is assumed to be unstable, this is the case
when the control plant undergoes Hopf bifurcation at e ¼ 0: To stabilize the equilibrium or to
annihilate the periodic solutions means to perform a delayed feedback control so that the trivial
equilibrium of the controlled system is asymptotically stable. In some applications, it is required
to maintain a periodic solution with given amplitude.

Eq. (1) is a small perturbation of an undamped s.d.o.f. vibration system. In practice, it is also
required to study the robust stabilization problem to the following equation:

’xðtÞ ¼ A0xðtÞ þ A1xðt � t1Þ þ egðxðtÞ; xðt � t1ÞÞ þ efðxðtÞ;xðt � t2ÞÞ; ð2Þ

where gð0; 0Þ ¼ fð0; 0Þ ¼ 0; xARn and 0oe51: Eq. (2) is a small perturbation of a linear delayed
system

’xðtÞ ¼ A0xðtÞ þ A1xðt � t1Þ: ð3Þ

We assume that the linear delayed Eq. (3) has exactly one pair of conjugate eigenvalues: l ¼ 7io;
and all the other eigenvalues stay in the open left-half complex plane. This case is encountered
when a delayed system with weak non-linearity undergoes Hopf bifurcation at e ¼ 0: For
example, it is easy to show that when T ¼ 1:2264; the quasi-polynomial l2 � 0:5le�lT þ 1 has
exactly one pair of roots l ¼ 71:2088i and all the other roots stay in the left-half complex plane.
Consequently the vibration system

.xðtÞ � 0:5ð1:2264þ eÞ ’xðt � 1Þ þ ð1:2264þ eÞ2xðtÞ þ emð1:2264þ eÞ2x3ðtÞ ¼ 0 ð4Þ

undergoes Hopf bifurcation at e ¼ 0; and for small 0oe51; the vibration frequency of the
bifurcating periodic solution is o ¼ 1:2088þ Oðe3Þ; see for example Ref. [5]. An equation of the
form Eq. (2) is then obtained after proper transformation if a (weak) linear delayed feedback
control e½uxðt � tÞ þ v ’xðt � tÞ� is performed on Eq. (4). The control objective is to annihilate the
periodic solution, or to stabilize the periodic solutions via delayed feedback.

Usually, uncertainty in time delay and system parameters exists due to measurement, modelling
errors, etc. So the asymptotical stability should be robust with respect to uncertain delays, or to
the uncertain system parameters, or to both of them. In solving the robust stabilization problem,
the introduction of the small parameter e is important and useful so that we can use the singular
perturbation methods to examine the dynamics of the corresponding DDE and to derive simple
stability conditions such that the robust stabilization problem can be achieved easily.
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3. The averaged equation

For small 0oe51; as in the case of ODE, it is beneficial to introduce the following
transformation:

xðtÞ ¼ rðtÞ cosðot þ yðtÞÞ;

’xðtÞ ¼ �orðtÞ sinðot þ yðtÞÞ; ð5Þ

where both rðtÞ and yðtÞ are to be determined. Substituting Eq. (5) into Eq. (1) yields

o’rðtÞ ¼ e sinðot þ yðtÞÞðg � f Þ;

orðtÞ’yðtÞ ¼ e cosðot þ yðtÞÞðg � f Þ; ð6Þ

where

f :¼ f ðrðtÞ cosðot þ yðtÞÞ;�rðtÞo sinðot þ yðtÞÞ; rðt � t2Þ cosðot � ot2 þ yðt � t2ÞÞ;

� rðt � t2Þo sinðot � ot2 þ yðt � t2ÞÞÞ;

g :¼ gðrðtÞ cosðot þ yðtÞÞ;�rðtÞo sinðot þ yðtÞÞ; rðt � t1Þ cosðot � ot1 þ yðt � t1ÞÞ;

� rðt � t1Þo sinðot � ot1 þ yðt � t1ÞÞÞ:

Let O :¼ Cð½�t; 0�;R2Þ; ðt ¼ maxft1; t2gÞ; be the Banach space of continuous functions
mapping the interval ½�t; 0� to R2; then Eq. (6) can be viewed as a FDE

’yðtÞ ¼ eYðt; ytÞ; yðtÞ :¼ ½rðtÞ yðtÞ�TAR2; ð7Þ

where ytðZÞ :¼ yðt þ ZÞ; ð8ZA½�t; 0�Þ; and Yðt; �Þ is periodic with period T ¼ 2p=o: For small e; yðtÞ
varies slowly, and ytðZÞ ¼ yðtÞ þ OðeÞ holds for 8ZA½�t; 0� with no restriction on the delay interval
[15]. This means that in applying the averaging method, rðt � t1Þ and yðt � t1Þ; rðt � t2Þ and
yðt � t2Þ; can be replaced by rðtÞ and yðtÞ over one period, respectively. In this way, the averaging
technique reduces the DDE to an ODE.

In fact, we define

F ðrÞ :¼
1

2p=o

Z 2p=o

0

f ðr cosðot þ yÞ;�ro sinðot þ yÞ; r cosðot � ot2 þ yÞ;

� ro sinðot � ot2 þ yÞÞ sinðot þ yÞ dt;

GðrÞ :¼
1

2p=o

Z 2p=o

0

g ðr cosðot þ yÞ;�ro sinðot þ yÞ; r cosðot � ot1 þ yÞ;

� ro sinðot � ot1 þ yÞÞ sinðot þ yÞ dt; ð8Þ

which satisfies Fð0Þ ¼ Gð0Þ ¼ 0; and they can be simplified as to

F ðrÞ :¼
1

2p

Z 2pþy

y
f ðr cos f;�ro sin f; r cosðf� ot2Þ;�ro sinðf� ot2ÞÞsin f dt

¼
1

2p

Z 2p

0

f ðr cosf;�ro sin f; r cosðf� ot2Þ;�ro sinðf� ot2ÞÞ sin f dt; ð9Þ
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GðrÞ :¼
1

2p

Z 2p

0

gðr cosf;�ro sin f; r cosðf� ot1Þ;�ro sinðf� ot1ÞÞ sinf dt: ð10Þ

Then the averaged equation of Eq. (6) that governs the variation of rðtÞ is as follows:

o’r ¼ ehðrÞ; hðrÞ :¼ GðrÞ � FðrÞ: ð11Þ

And an equation that describes the variation of yðtÞ can be obtained as well. As is well known, an
equilibrium r ¼ r0 of Eq. (11) is asymptotically stable if h0ðr0Þo0; and unstable if h0ðr0Þ > 0:

4. Robust stabilization

In this section, we first derive a simple stability condition for the controlled system (1) with fixed
parameters, then study the problem of robust stabilization when the system has uncertain
parameters. Two simple demonstrative examples will be presented.

4.1. Stability of the averaged equation

One can readily prove that the above claim about the stability of averaged equation is also true
for the stability of x ¼ 0 of the original Eq. (1).

In fact, denote by D1; D2; D3 and D4 the partial derivative operators with respect to from the
first to the fourth variables, respectively, in f ; g; then the characteristic quasi-polynomial pðl; eÞ of
the linearized system of Eq. (1) reads

pðl; eÞ ¼ l2 þ o2 þ e½b1 þ b2lþ e�lt1ðb3 þ b4lÞ� � e½a1 þ a2lþ e�lt2ða3 þ a4lÞ�; ð12Þ

where

a1 ¼ D1f ð0; 0; 0; 0Þ; a2 ¼ D2f ð0; 0; 0; 0Þ; a3 ¼ D3f ð0; 0; 0; 0Þ; a4 ¼ D4f ð0; 0; 0; 0Þ;

b1 ¼ D1gð0; 0; 0; 0Þ; b2 ¼ D2gð0; 0; 0; 0Þ; b3 ¼ D3gð0; 0; 0; 0Þ; b4 ¼ D4gð0; 0; 0; 0Þ:

The equilibrium x ¼ 0 of Eq. (1) is asymptotically stable if all the roots of pðl; eÞ stay in the open
left-half complex plane. When e ¼ 0; Eq. (12) has a pair of roots 7io on the imaginary axis, and
the equilibrium x ¼ 0 of Eq. (1) is critically stable. An application of the implicit function theorem
shows that the roots lðeÞ of Eq. (12) depend smoothly on e in a neighborhood of e ¼ 0: The
movement of the above two roots becomes clear if the sign of S� ¼ Re l0ð0Þ is not zero. For small
e > 0; the equilibrium x ¼ 0 of Eq. (1) is asymptotically stable if S�o0; and unstable if S� > 0:

Performing implicit differentiation of l in Eq. (12) with respect to e at e ¼ 0 gives

S� ¼ �
b2

2
þ

b3 sinðot1Þ
2o

�
b4 cosðot1Þ

2
þ

a2

2
�

a3 sinðot2Þ
2o

þ
a4 cosðot2Þ

2
: ð13Þ

On the other hand, straightforward computation tells

h0ð0Þ ¼ �
b2o
2

þ
b3 sinðot1Þ

2
�

b4o cosðot1Þ
2

þ
a2o
2

�
a3 sinðot2Þ

2
þ

a4o cosðot2Þ
2

: ð14Þ
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Therefore, one has

S� ¼
h0ð0Þ
o

: ð15Þ

It follows that there is a small e0 > 0 such that for all eAð0; e0Þ; one has Re lðeÞo0 if h0ð0Þo0; or
there is at least one pair of characteristic roots with Re lðeÞ > 0 if h0ð0Þ > 0: That is to say, there is a
small e0 > 0 such that for all eAð0; e0Þ; the equilibrium x ¼ 0 of Eq. (1) is asymptotically stable if
h0ð0Þo0; and unstable if h0ð0Þ > 0: More precisely, we have

Theorem 1. There is a small e0 > 0 such that for all eAð0; e0Þ; the equilibrium x ¼ 0 of Eq. (1) is

asymptotically stable if

�oD2g þ sinðot1ÞD3g � o cosðot1ÞD4g þ oD2f � sinðot2ÞD3f þ o cosðot2ÞD4fo0 ð16Þ

and unstable if the revised strict inequality holds, where (and hereafter) all the partial derivatives are

evaluated at the origin ð0; 0; 0; 0Þ:

Unlike the current methods that are usually very difficult to use to achieve simple stability
conditions for the trivial solution of a delayed system, the averaging method results in a very
simple stability condition as shown in Eq. (16). Moreover, it is easy to show that a linear delayed
feedback control of the form

f ðxðtÞ; ’xðtÞ; xðt � t2Þ; ’xðt � t2ÞÞ ¼ w ’xðtÞ þ uxðt � t2Þ þ v ’xðt � t2Þ ð17Þ

can always stabilize x ¼ 0 of Eq. (1). This claim is also true for the delayed linear feedback of
Pyragas type (DLFP), defined as

f ðxðtÞ; ’xðtÞ;xðt � t2Þ; ’xðt � t2ÞÞ ¼ u½xðtÞ � xðt � t2Þ� þ v½ ’xðtÞ � ’xðt � t2Þ�: ð18Þ

Remark 1. A DLFP control is widely used in stabilizing UPOs (unstable periodic orbits) in
nonlinear dynamics, it is also frequently applied to improve the stability of a periodic motion
emerged from a periodic excitation. For example, the periodic forced system

.xðtÞ � ex ’xðtÞ þ a2xðtÞ ¼ p0 cosðotÞ ð19Þ

has an unstable periodic motion

%xðtÞ ¼
ða2 � o2Þp0

ðexoÞ2 þ ða2 � o2Þ2
cosðotÞ �

exop0

ðexoÞ2 þ ða2 � o2Þ2
sinðotÞ ð20Þ

with period T ¼ 2p=o: Such a mathematical model with negative damping is often used to explain
the self-excited vibrations caused by friction [16]. To improve the asymptotic stability of %xðtÞ; a
state feedback control with the same delay T can be introduced to the system

.xðtÞ � ex ’xðtÞ þ a2xðtÞ ¼ p0 cosðotÞ þ eu½xðtÞ � xðt � TÞ� þ ev½ ’xðtÞ � ’xðt � TÞ�: ð21Þ

Let xðtÞ ¼ %xðtÞ þ dðtÞ; then the disturbance dðtÞ satisfies

.dðtÞ þ a2dðtÞ � ex’dðtÞ ¼ eu½dðtÞ � dðt � TÞ� þ ev½’dðtÞ � ’dðt � TÞ�: ð22Þ
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To stabilize the periodic solution %xðtÞ; it is necessary to stabilize the equilibrium d ¼ 0 of Eq. (22).
For small e > 0; the stability condition for the equilibrium d ¼ 0 of Eq. (22) simply reads

u sinðaTÞ � va cosðaTÞ þ xaþ vao0:

4.2. Robust stabilization

This subsection deals with the robust stabilization of Eq. (1). We assume that the system has
several uncertain parameters

qAQ :¼ fðq1; q2;y; qsÞARs :
%
qipqip %qi ði ¼ 1; 2;y; sÞg;

%
t jptjp%tj ðj ¼ 1; 2Þ: ð23Þ

The objective is to determine the feedback gains such that the trivial equilibrium x ¼ 0 of Eq. (1)
is asymptotically stable for all parameter combinations.

Though the method of Lyapunov functional can be applied to solve this robust stabilization
problem, the averaging method is most preferable. As seen in the above subsection, the averaging
technique features extremely simple stability conditions in terms of system parameters, which is
very important and advantageous for the stabilization problem of any systems with uncertain
parameters. Recall that the stability condition of the equilibrium x ¼ 0 of Eq. (1) is h0ð0Þo0;
namely condition (16). This stability condition is very simple and can be easily checked even when
uncertain parameters are involved. Now, h0ð0Þ depends on the uncertain parameters qAQ; and

%
t jptjp%tj; ðj ¼ 1; 2Þ; this leads to

Theorem 2. There is a small e0 > 0 such that for all eAð0; e0Þ; the equilibrium x ¼ 0 of the controlled
system Eq. (1) is asymptotically stable for all parameters qAQ; and

%
t jptjp%tj ðj ¼ 1; 2Þ if the

feedback gains are chosen such that the maximal value of h0ð0Þ over qAQ; and
%
t jptjp%tj ðj ¼ 1; 2Þ is

negative.

It is worthy of note that the extreme case when
%
t 1 ¼ 0 or

%
t 2 ¼ 0; must be considered separately.

In this case, the stability condition consists of the condition of Theorem 2 and the Hurwitz
stability conditions that govern the asymptotical stability of the system without delays.

In addition, we can eliminate the delays ti from the above inequality to get a stabilization
condition that is independent of the delay. In fact, there is a fA½0; 2pÞ such that

a sin x þ b cos x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
sinðx þ fÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
ð24Þ

then there is a small e0 > 0 such that for all eAð0; e0Þ; the equilibrium x ¼ 0 of Eq. (1) is
asymptotically for all parameters qAQ; and

%
t jptjp%tj ðj ¼ 1; 2Þ if the feedback gains are chosen

such that

max
qAQ

ðD2f � D2gÞoþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD3f Þ2 þ ðD4f Þ2o2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD3gÞ2 þ ðD4gÞ2o2

q� �
o0: ð25Þ

In [17], a different method on the basis of the Hermite–Biehler theorem is given for determining
the admissible set of the feedback gains of a PID control that stabilizes a DDE with fixed
parameters. It does not work for our problem due to the parametric uncertainty.
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The asymptotical stability of a non-trivial equilibrium r0 > 0 of the averaged equation is
governed by h0ðr0Þo0: The idea used in Ref. [14] can be used to prove that a delayed cubic
feedback can always stabilize an unstable periodic solution of Eq. (1) (which corresponds to a
r0 > 0 of the averaged system) with any prescribed amplitude. The robustness analysis can be
carried out easily as done above for the trivial solution.

4.3. Illustrative examples

To demonstrate the effectiveness of the presented method, two simple examples are given as
follows.

Example 1. Robust stabilization of the linear vibration system with negative damping. Let us first
consider the following vibration system:

.xðtÞ þ o2xðtÞ � ex ’xðtÞ ¼ e½uxðt � tÞ þ v ’xðt � tÞ�; ð26Þ

where a negative damping coefficient is considered. The uncontrolled system is obviously unstable
since the system has negative damping. In the design phase, the controlled system is usually
assumed to be asymptotically stable when the delay disappears. Now, the feedback gains u and v
are chosen so as to make the equilibrium of the controlled system asymptotically stable for all
0ooA½o1;o2�; 0oxA½x1; x2� and tA½0; t0�: Since the condition governing the asymptotical
stability of x ¼ 0 is

vo cosðotÞ � u sinðotÞ þ xoo0; euoo2; ð27Þ

where the first inequality comes from h0ð0Þo0; and the second results from the stability condition
for the case of t ¼ 0: So the feedback gains should be chosen such that the above condition holds
for all 0ooA½o1;o2�; 0oxA½x1; x2� and tA½0; t0�:

Let us check the validity of the result in a different routine. Obviously, the characteristic
function of the linear system is

pðlÞ ¼ l2 � exlþ o2 � eðu þ vlÞe�lt: ð28Þ

We choose u; v such that condition (27) holds for all 0ooA½o1;o2�; 0oxA½x1; x2� and tA½0; t0�;
then it is obvious that the system without delay is asymptotically stable for all such parameter
combination. Moreover, following the idea used in Ref. [18], one can see that for small e; the
characteristic roots that cross the imaginary axis must be those emerged from 7io: Let l ¼
iðoþ esÞ; then for the problem of robust stabilization it is required that pðiðoþ esÞÞa0 for all
0ooA½o1;o2�; 0oxA½x1; x2� and tA½0; t0�: Straightforward computation shows that

Re pðiðoþ esÞÞ ¼ ½�2os� vo sinðotÞ � u cosðotÞ�eþ Oðe2Þ;

Im pðiðoþ esÞÞ ¼ ½�xo� vo cosðotÞ þ u sinðotÞ�eþ Oðe2Þ: ð29Þ

It follows that there is a e0 > 0; such that pðiðoþ esÞÞa0 holds for all 0ooA½o1;o2�; 0oxA½x1; x2�
and tA½0; t0�; and for all eAð0; e0Þ if condition (27) holds. Remark 1 tells that the delayed feedback
control stabilizes also the periodic solution %xðtÞ of Eq. (19) robustly.

In addition, vibration instabilities in machining processes such as chatter in metal cutting and
washboarding in wood machining have been shown to involve regenerative cutting force and the
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regenerative damping force. To improve the stability of the vibration system, the following s.d.o.f.
model is frequently used:

m .xðtÞ þ c ’xðtÞ þ kxðtÞ ¼ �u½xðtÞ � xðt � TÞ� � v½ ’xðtÞ � ’xðt � TÞ�; ð30Þ

where m; c; k are the mass, damping and stiffness of the system, respectively, T is the tooth
passage period, and �u½xðtÞ � xðt � TÞ�; �v½ ’xðtÞ � ’xðt � TÞ� are the so-called the regenerative
cutting force and the regenerative damping force, respectively [19]. If we assume that the damping
and the feedback gains are of order e; then the robust stability condition for x ¼ 0 of Eq. (30) can
be obtained easily as done above.

Example 2. Robust stabilization of a non-linear vibration system. Consider the delayed linear
feedback control to the delayed van der Pol oscillator

.xðtÞ þ xðtÞ � e½1� x2ðt � t1Þ� ’xðtÞ ¼ e½uxðt � t2Þ þ v ’xðt � t2Þ�: ð31Þ

As is well known, if 0oe51; then the uncontrolled van del Pol oscillator has an unstable
equilibrium x ¼ 0 and an asymptotically stable limit cycle with period 1þ oðeÞ and with amplitude
2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� cosð2t1Þ

p
þ OðeÞ; since GðrÞ ¼ ½1� ð1� cosð2t1Þ=2Þr2=2�r=2: For the controlled system, it

is easy to show that FðrÞ ¼ 1
2
ðv cos t2 � u sin t2Þr; so the condition G0ð0Þ � F 0ð0Þo0 that governs

the asymptotic stability of x ¼ 0 of the controlled van del Pol equation is as follows: 1þ
v cos t2 � u sin t2o0: To ensure the robustness of the stability in considering tiA½

%
t i; %ti� ði ¼ 1; 2Þ;

the feedback gain ðu; vÞ should be chosen such that

1þ v cos t2 � u sin t2o0; 8tiA½
%
t i; %ti� ði ¼ 1; 2Þ: ð32Þ

This can be checked easily as above. Let us check the results numerically.
Let t1 ¼ 0:1; u ¼ 0; e ¼ 0:1; t2A½0; 0:2�; then the admissible set of v is vo� 1=cos t2p

�1=cos 0:2 ¼ �1:0203; due to condition (32). Hence, x ¼ 0 is not unstable if v > �1: Fig. 1 shows
that when v ¼ �0:9; t2 ¼ 0:05; and v ¼ �0:9; t2 ¼ 0:7; the zero solution is unstable. Decrease the
value of v to �1:4; the trivial equilibrium x ¼ 0 is robust asymptotically stable as shown in Fig. 2.
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In Fig. 3, the zero solution of the controlled system with v ¼ �3; t2 ¼ 0:05; and v ¼ �5; t2 ¼ 0:05
is asymptotically stable, too. If 1þ v cos t2 � u sin t2 > 0; then the trivial equilibrium x ¼ 0 of the
controlled system is unstable, and the unique non-trivial periodic solution emerges. In fact, the
unique non-trivial periodic solution corresponds to the unique non-trivial root of GðrÞ � F ðrÞ ¼ 0;
which reads

r0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v cos t2 � u sin t2

2� cosð2t1Þ

s
: ð33Þ

Obviously, the amplitude r0 can be any given positive value by proper chosen ðu; vÞ: The unique
periodic solution is asymptotically stable since h0ðr0Þ ¼ �ð1þ v cos t2 � u sin t2Þo0: Considering
the uncertainty of the delay and a given admissible interval

%
rpr0p%r for the amplitude, the

problem of robust stabilization to this periodic solution is to choose ðu; vÞ such that

1þ v cos t2 � u sin t2 > 0;
%
rp2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v cos t2 � u sin t2

2� cosð2t1Þ

s
p%r; 8tiA½

%
t i; %ti� ði ¼ 1; 2Þ: ð34Þ

This also can be checked easily as done above.

5. Extension

In the above two sections, as a key step in the problem of robust stabilization of delayed s.d.o.f.
vibration system, the polar co-ordinates and the averaging method were combined to derive a
simple stability condition of Eq. (1). In a more general case such as Eq. (2), the polar co-ordinates
and the averaging method cannot be used directly, and one needs firstly to reduce the infinite-
dimensional equation into a set of ODE. To this end, the center manifold reduction for DDE is
preferable.

5.1. The reduction procedure

Let O :¼ Cð½�t; 0�;RnÞ be the Banach space of continuous functions mapping ½�t; 0� into Rn

(the real n-dimensional linear vector space equipped with norm jfj) with norm jjfjj ¼
max�tpyp0jfðyÞj; and O� :¼ Cð½0; t�;R�nÞ the Banach space of continuous functions mapping
½0; t� into R�n (the linear space of n-dimensional row vectors) with norm jjcjj ¼ max0psptjcðsÞj;
where t ¼ maxft1; t2g > 0: The unperturbed Eq. (3) can be rewritten as

’xðtÞ ¼
Z 0

�t
dgðyÞxðt þ yÞ; ð35Þ

where the function gðyÞ of bounded variation is

gðyÞ ¼

A0; y ¼ 0;

A1; y ¼ �t1;

0; otherwise:

8><
>: ð36Þ
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Along with Eq. (35), we consider the equation

’yðtÞ ¼ �
Z 0

�t
yðt � yÞ dgðyÞ;

which is ‘‘adjoint’’ with respect to the bilinear form for all fAO and cAO�

ðc;fÞ :¼ cð0Þfð0Þ �
Z 0

�t

Z y

0

cðx� yÞ dgðyÞfðxÞ dx ¼ cð0Þfð0Þ �
Z 0

�t
cðxþ tÞA1fðxÞ dx: ð37Þ

In addition, we define the linear operator L : O-O and the ‘‘adjoint’’ linear operator
L� :O�-O�

LðfðyÞÞ ¼
df
dy

; yA½�t; 0Þ;

A0fð0Þ þ A1fð�t1Þ; y ¼ 0;

8<
: L�ðcðsÞÞ ¼

�
dc
ds

; sAð0; t�;

cð0ÞA0 þ cð�t1ÞA1; s ¼ 0;

8<
:

ð38Þ

in the sense of ðL�c;fÞ ¼ ðc;LfÞ for all fAO and cAO�: The eigenvalues of L are the same as
the characteristic roots of the linear delayed system (35), namely the roots of the characteristic
equation det½lIn�n � A0 � A1e

�lt1 � ¼ 0:
Now we assume that Eq. (35) has exactly one pair of conjugate characteristic roots, l ¼ 7io

and all the other eigenvalues stay in the open left-half complex plane. In applying the center
manifold reduction, it is required to decompose the state space O by the two characteristic roots
l ¼ 7io: To this end, we define two basis matrices UðyÞn�2; WðsÞ2�n that satisfy LU ¼ UB;
L�W ¼ BW and ðW;UÞ ¼ I2�2; where

B ¼
0 �o

o 0

" #
: ð39Þ

Once the solutions of the eigenvalue problem LðfðyÞÞ ¼ iofðyÞ; ðfAOÞ; namely

df
dy

¼ iofðyÞ; yA½�t; 0Þ; ð40aÞ

A0fð0Þ þ A1fð�t1Þ ¼ iofð0Þ ð40bÞ

and that of the ‘‘adjoint’’ eigenvalue problem L�ðcðsÞÞ ¼ iocðsÞ; ðcAO�Þ; namely

dc
ds

¼ iocðsÞ; sAð0; t�; ð41aÞ

cð0ÞA0 þ cð�t1ÞA1 ¼ iocð0Þ ð41bÞ

are on hand, UðyÞn�2 and WðsÞ2�n are found to be

UðyÞ ¼ ½Im fðyÞRe fðyÞ�; WðsÞ ¼ ½Re cTðsÞ Im cTðsÞ�T ð42Þ

then O can be decomposed by l ¼ 7io as O ¼ P"Q; where P ¼ spanfIm fðyÞ;Re fðyÞg:
Now, let xðtÞ be the solution of Eq. (2), then we have

xt ¼ Uzþ x
Q
t ; z ¼ ðW; xtÞ; x

Q
t AQ: ð43Þ
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From the definition, z is found to satisfy the following differential equation [15]:

’z ¼ Bzþ eWð0Þðf þ gÞðUzþ x
Q
t Þ; ð44Þ

where fððUzþ x
Q
t Þjy¼0; ðUzþ x

Q
t Þjy¼�tÞ and gððUzþ x

Q
t Þjy¼0; ðUzþ x

Q
t Þjy¼�tÞ are simply denoted

by fðUzþ x
Q
t Þ and gðUzþ x

Q
t Þ; respectively. And x

Q
t is governed by a differential equation. In

addition, it has been shown that any bounded solution of x
Q
t must be of such a nature that

x
Q
t ¼ OðeÞ as e-0 [15]. Consequently, if our analysis is based upon an approximation procedure

that can be justified by investigating only the terms of order e; then the basic problem lies in the
study of the ODE

’z ¼ Bzþ eWð0Þðf þ gÞðUzÞ; z ¼ ðW; xtÞ: ð45Þ

At this stage, it is convenient to combine the polar co-ordinates and the averaging method to carry
out the stability analysis of Eq. (2). In fact, let z ¼ ½z1 z2�T; then at e ¼ 0; the above equation has a
solution ðz1; z2Þ ¼ ð�r sinðotÞ; r cosðotÞÞ; hence for small 0oe51; the transformation

z1ðtÞ ¼ �rðtÞ sinðot þ yðtÞÞ;

z2ðtÞ ¼ rðtÞ cosðot þ yðtÞÞ; ð46Þ

converts Eq. (53) into a set of equations

o’rðtÞ ¼ eRðt; rðtÞ; yðtÞÞ;

o’yðtÞ ¼ eYðt; rðtÞ; yðtÞÞ; ð47Þ

where Rðt; r; yÞ; yðt; r; yÞ are periodic in t with period T ¼ 2p=o; rðtÞ and yðtÞ can be considered as
constants over one period since they vary slowly. The averaged equation reads

o’rðtÞ ¼ e %Rðr; yÞ :¼
e

2p=o

Z 2p=o

0

Rðt; r; yÞ dt;

o’yðtÞ ¼ e %Yðr; yÞ :¼
e

2p=o

Z 2p=o

0

Yðt; r; yÞ dt: ð48Þ

In particular, we are interested in the case when hðrÞ :¼ o=ð2pÞ
R 2p=o
0 Rðt; r; yÞ dt is independent of

y: For this case, we have the averaged equation

o’r ¼ ehðrÞ: ð49Þ

The main procedures above can be found in Ref. [15], but were written in a form that is very
difficult to understand by most engineers. This subsection is to make the theory more
understandable and computationally tractable.

It is worth mentioning that the above reduction procedure is valid also for the case when the
uncontrolled system has multiple time delays. In addition, Ref. [20] presented alternative ways of
averaging which retain the delay term, but the above procedure is enough and also very effective
in solving the present problem.
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5.2. Eq. (1) revisited

To illustrate the reduction procedure above, let us consider again the reduction for Eq. (1).
Solving the eigenvalue problem LfðyÞ ¼ iofðyÞ; ðfAOÞ; namely

df
dy

¼ iofðyÞ; yA½�t; 0Þ; ð50aÞ

0 1

�o2 0

" #
fð0Þ ¼ iofð0Þ; ð50bÞ

gives a solution fðyÞ ¼ ½1 io�Teioy; so the basis matrix UðyÞ can be taken as

UðyÞ ¼ ½ImfðyÞ Re fðyÞ� ¼
sinðoyÞ cosðoyÞ

o cosðoyÞ �o sinðoyÞ

" #
: ð51Þ

And similarly, the ‘‘adjoint’’ eigenvalue problem L�cðsÞ ¼ iocðsÞ; ðcAO�Þ; namely

dc
ds

¼ �iocðsÞ; sAð0; t�; ð52aÞ

cð0Þ
0 1

�o2 0

" #
¼ iocð0Þ; ð52bÞ

has a solution cðsÞ ¼ ½io 1�e�ios ¼ ½o sinðosÞ cosðosÞ� þ i½o cosðosÞ � sinðosÞ�; so the basis
matrix WðsÞ can be taken as

WðsÞ ¼
o 0

0 o

" #�1
o sinðosÞ cosðosÞ

o cosðosÞ �sinðosÞ

" #
¼

sinðosÞ cosðosÞ=o

cosðosÞ �sinðosÞ=o

" #
; ð53Þ

which satisfies ðW;UÞ ¼ I2�2: Let

kðz1; z2Þ :¼ f ðz2;oz1;�z1 sinðot2Þ þ z2 cosðot2Þ;oðz1 cosðot2Þ þ z2 sinðot2ÞÞÞ

� gðz2;oz1;�z1 sinðot1Þ þ z2 cosðot1Þ;oðz1 cosðot1Þ þ z2 sinðot1ÞÞÞ: ð54Þ

The corresponding simplified Eq. (45) now reads

’z1

’z2

" #
¼

0 �o

o 0

" #
z1

z2

" #
þ e

0 1=o

1 0

" #
0

kðz1; z2Þ

" #
: ð55Þ

Hence, for small 0oe51; the transformation (46) converts the above equation to the following
equations in polar co-ordinates:

o’rðtÞ ¼ e½gðrðtÞ cosðot þ yðtÞÞ;�rðtÞo sinðot þ yðtÞÞ; rðt � t1Þ cosðot � ot1 þ yðt � t1ÞÞ;

� rðt � t1Þo sinðot � ot1 þ yðt � t1ÞÞÞ � f ðrðtÞ cosðot þ yðtÞÞ;�rðtÞo sinðot þ yðtÞÞ;

rðt � t2Þ cosðot � ot2 þ yðt � t2ÞÞ;�rðt � t2Þo sinðot � ot2 þ yðt � t2ÞÞÞ� sinðot þ yðtÞÞ;
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orðtÞ’yðtÞ ¼ e½gðrðtÞ cosðot þ yðtÞÞ;�rðtÞo sinðot þ yðtÞÞ; rðt � t1Þ cosðot � ot1 þ yðt � t1ÞÞ;

� rðt � t1Þo sinðot � ot1 þ yðt � t1ÞÞÞ � f ðrðtÞ cosðot þ yðtÞÞ;�rðtÞo sinðot þ yðtÞÞ;

rðt � t2Þ cosðot � ot2 þ yðt � t2ÞÞ;�rðt � t2Þo sinðot � ot2 þ yðt � t2ÞÞÞ�

� cosðot þ yðtÞÞ; ð56Þ

which is exactly the same as Eq. (6). As a result, the averaging technique simplifies the above
equation to Eq. (11).

5.3. Stabilization

Once the reduced ODE are at hand, the problem of robust stabilization can be solved as in the
above two sections. In fact, it has been shown that there is a e0 > 0 such that for all eAð0; e0Þ; the
equilibrium x ¼ 0 of Eq. (2) is asymptotically stable if the trivial equilibrium of the averaged
equation is asymptotically stable, and is unstable if the trivial equilibrium of the averaged
equation is unstable. Note that the feedback gains are linearly appeared in the averaged equation,
this observation leads to the following theorem.

Theorem 3. Assume that Eq. (2) has exactly one pair of conjugate eigenvalues l ¼ 7io and all the
other eigenvalues stay in the open left-half complex plane. Then there is a small e0 > 0 such that for

all eAð0; e0Þ; a delayed state feedback control can always make the equilibrium of Eq. (2)
asymptotically stable.

In fact, given a delayed state feedback control of the form

fðxðtÞ;xðt � t2ÞÞ ¼ Kxðt � t2Þ; 0aKARn�n ð57Þ

we have a non-zero terms eWð0ÞfðUzÞ in Eq. (45):

Wð0ÞfðUzÞ ¼ ½Wð0Þ � K � Uð�t2Þ�zAR2; Wð0Þ � K � Uð�t2Þa0 ð58Þ

since U; W have two independent column vectors, and two independent row vectors, respectively.
Hence, the averaged equation must contain a term cr with the constant c being a linear
combination of the feedback gains (the entries of the matrix K). Therefore, the stability condition
h0ð0Þo0 can always be true by proper choice of the feedback gains. As a result, there is a e0 > 0
such that for all eAð0; e0Þ; the equilibrium x ¼ 0 of Eq. (2) is asymptotically stable for all qAQ and
8tiA½

%
t i; %ti� ði ¼ 1; 2Þ; if h0ð0Þo0 holds for all qAQ and 8tiA½

%
t i; %ti� ði ¼ 1; 2Þ:

Remark 2. By following the idea used in Ref. [14], one can also prove that if Eq. (35) has exactly
one pair of conjugate eigenvalues 7io and all the other eigenvalues stay in the open left-half
complex plane, then for small e > 0; a non-linear feedback control

efðxðtÞ;xðt � t2ÞÞ ¼ e½K1xðt � t2Þ þ K3x
3ðt � t2Þ�; 0aK3ARn�n ð59Þ

can always stabilize an unstable periodic solution of Eq. (2) with any prescribed amplitude. Here

x3ðt � t2Þ stands for ½x3
1ðt � t2Þ;x3

2ðt � t2Þ;y; x3
nðt � t3Þ�T:
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6. Conclusions

In this paper, the problem of robust stabilization of a type of non-linear delayed systems with
uncertain parameters via general delayed feedback control is solved on the basis of the averaging
method. The main contributions of this paper are two-fold. Firstly, we have proved that a linear
delayed feedback control can always stabilize the trivial equilibrium, as well as the periodic
solutions, of a class of delayed systems whose linearized systems have characteristic roots of non-
positive real parts only, a class of systems that is much broader than that discussed in the
literature. The results generalize some previous results and can also serve as a method for the
Hopf bifurcation control of a delayed system with weak non-linearity via delayed feedback
control. Secondly, we have applied the averaging technique to study the problem of robust
stabilization to general delayed systems that are resulted from small perturbation of linear delayed
systems. Comparing with the widely used method of Lyapunov functional, the present method
shows more effective and flexible in application. An important feature of the present method is the
introduction of a small parameter such that the asymptotic stability of the trivial solution (and the
periodic solutions) of the controlled system is the same as that of the equilibriums of the averaged
equation obtained by using the averaging method for DDEs. The computation is simple and most
importantly, the stability condition resulted from the averaged equation is very simple, for
example, the feedback gains are linearly appeared in the stability condition. Thus, the conditions
that justify the problem of robust stabilization can be easily verified.
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